

Abstracts

Device Considerations and Modeling for the Design of an InP-Based MODFET Millimeter-Wave Resistive Mixer with Superior Conversion Efficiency

E.W. Lin and W.H. Ku. "Device Considerations and Modeling for the Design of an InP-Based MODFET Millimeter-Wave Resistive Mixer with Superior Conversion Efficiency." 1995 Transactions on Microwave Theory and Techniques 43.8 (Aug. 1995 [T-MTT]): 1951-1959.

We report on the device considerations for resistive FET mixer applications and discuss the design and fabrication of an optimized InP-based 0.1 μ m gate length planar-doped pseudomorphic In_{0.42}Al_{0.58}As/In_{0.65}Ga_{0.35}As modulation-doped FET (MODFET) well-suited for resistive mixer applications. In addition, we present a general large-signal model suitable for describing the FET in its passive mode of operation to assist in the design and simulation of such mixers. Finally, we discuss the theoretical design of a novel W-band, image-reject resistive mixer based on a large-signal model of our optimized device. The predicted performance of the mixer under +8 dBm of LO drive indicates a minimum conversion loss of 9 dB at 94 GHz, a significant improvement of over 3 dB in comparison to similar GaAs-based mixers, suggesting the potential of InP-based resistive mixer technology to achieve superior conversion loss performance.

[Return to main document.](#)